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Preliminaries

Accompanying website: https://auctionsolver.herokuapp.com

A working paper is also online
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Introduction

In recent years, the level-k auction model (Crawford and Iriberri, 2007) has
emerged as a rival to more traditional equilibrium based approaches:

Level-0 types either bid their valuation or bid randomly

For k ≥ 1, level-k bids optimally on the assumption that all
opponents are level k − 1

Most individuals assumed to be levels 1− 3
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Introduction

Lots of debate over whether level-k can explain the ‘winner’s curse’ in
common value auctions:

Crawford and Iriberri (2007)

Ivanov et al. (2010)

Costa-Gomes and Shimoji (2015)
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Introduction

Growing interest in the implications of the level-k auction model for
mechanism design:

Crawford et al. (2009)

De Clippel et al. (2019)
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Introduction

Surprisingly, however, there is little evidence on whether level-k can
outperform equilibrium in the basic IPV setting that forms the starting
point for most auctions research:

Most experiments use uniform values. But then level-k and
equilibrium exactly coincide (for all k ≥ 1)

Crawford and Iriberri (2007)’s IPV data do not strongly separate the
models

Kirchkamp and Reiß (2010)’s setting better separates the models
(marginally), but their analysis of level-k is incorrect

Non-experimental approaches (Gillen, 2009; An, 2017) cannot be
used to convincingly decide between the models
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Introduction

Plan for paper:

1 Find simple environments that dramatically disentangle the two
models’ predictions

2 Construct these environments in the laboratory and check which
model performs the best

Main (substantive) finding: despite its success in other domains, the
level-k model cannot explain behaviour in auctions

10 / 46



The all-pay auction

Set-up:

n ≥ 2 bidders

Everybody pays their bid (even the losers)

Values and bids are restricted to X = {0, 1, 2, ..., x} where x ∈ N+

Nobody wins if the highest bid is a tie (as in the experiment)

For the level-k analysis, will assume that values are uniformly and
independently distributed
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The all-pay auction: equilibrium analysis

Proposition 1

The discrete all-pay auction has exactly one symmetric Bayes-Nash
equilibrium.

Sketch of proof.

To prove existence, just apply Harsanyi (1967). To prove uniqueness,
argue that any SE must be monotone, gapless and satisfy
P(b = 0|v = 0) = 1. Given these facts, any candidate SE strategy can be
equivalently represented in jump form. One can then define an inductive
algorithm which produces the candidate SE; and finally show that no other
strategy could be an SE.
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The all-pay auction: equilibrium analysis

Importantly, the proof gives us recipe for computing the SE:
https://auctionsolver.herokuapp.com/

In the case of uniform values, we already know that the equilibrium is
in properly mixed strategies (Rasooly and Gavidia-Calderon, 2020)

However, the algorithm tells us that expected bids are
well-approximated by the continuous formula

β(v) =

(
n − 1

n

)
vn

(x − 1)n−1
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The all-pay auction: equilibrium analysis
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The all-pay auction: level-k analysis

Given that level-0 bids are uniform, the level-1 player solves the problem

max
b∈X

π(v , b) ≡ vP(win|b)− b = v

(
b

x + 1

)n−1
− b.
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The all-pay auction: level-k analysis

Given that level-0 bids are uniform, the level-1 player solves the problem

max
b∈X

π(v , b) ≡ vP(win|b)− b = v

(
b

x + 1

)n−1
− b.

To solve this, suppose first that n = 2. Then

π(v , b) ≡ b
v

x + 1︸ ︷︷ ︸
<1

−b

So b∗ = 0 (for all v !)
If this is true for n = 2, it must also be true for all n ≥ 2.

16 / 46



The all-pay auction: level-k analysis

As we have seen, β1(v) = 0 for all v ∈ X

So β2(v) = 1 for v ≥ 2 and β2(v) = 0 otherwise

Similarly, β3(v) = 2 for v ≥ 3 and β3(v) = 0 otherwise

etc. etc.

Note: we are assuming that level-k players break ties by choosing the
lowest optimal bid.
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The all-pay auction: level-k analysis

What happens at very high levels?

Given our assumption about tie-breaking, level-k can never coincide
with the symmetric equilibrium

Moreover, level-k must cycle as k →∞

If it did not cycle, there would need to exist some k ∈ N such that βK
coincides with β′

K for all k ′ > k
But then βK would be a symmetric, pure strategy equilibrium,
contradicting Rasooly and Gavidia-Calderon (2020)’s Prop 4.
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The all-pay auction: level-k analysis

Proposition 2

Suppose that

k ≤ (x + 1)
n−1
n + 1.

Then a level-k bidder sets βk(v) = k − 1 for v ≥ k and βk(v) = 0
otherwise. Moreover, there is no k ∈ N at which βk coincides with
equilibrium; with the implication that βk cycles as k →∞.
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The all-pay auction: comparing the models
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The first-price auction

Set-up:

n ≥ 2 bidders

Only the winner pays their bid

Values and bids are restricted to X = {0, 1, 2, ..., x} where x ∈ N+

Nobody wins if the highest bid is a tie

Values are uniformly and independently distributed

Each player is only allowed to bid with probability p
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The first-price auction: equilibrium analysis

Proposition 3

The discrete first-price auction has exactly one symmetric Bayes-Nash
equilibrium if p ∈ (0, 1).

Sketch of proof.

As before!

26 / 46



The first-price auction: equilibrium analysis

As before, the proof tells us exactly how to compute the (unique) SE

With uniform values, expected bids remain well-approximated by the
continuous equilibrium, which is now

β(v) =

(
n − 1

n

)
v − x(1− p)

np

[
1−

(
1− p

1− p + p(v/x)

)n−1
]
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The first-price auction: equilibrium analysis
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The first-price auction: level-k analysis

Given that level-0 bids are either cancelled or uniform on X, a level-1
player solves the problem

max
b∈X

(v − b)P(win|b) = (v − b)

(
1− p +

pb

x + 1

)n−1

Routine optimisation then reveals that

β1(v) ≈ max

{(
n − 1

n

)
v −

(
1− p

p

)
x

n
, 0

}
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The first-price auction: level-k analysis
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The first-price auction: separating the models

Our goal is to disentangle the two theories. To this end, we define the
distance between the theories as

d(p) ≡
∫ x

0

∣∣β(v)− β1(v)
∣∣ dv .

We now study the probability p∗ that maximises this distance.
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The first-price auction: comparing the models

Proposition 4

p∗ ∈ [1/n, 1).
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The first-price auction: separating the models

In fact, a numerical analysis reveals that p∗ ≈ 1/n.

Table: Optimal cancellation probabilities (rounded)

n 2 3 4 5 6 7 8

p∗ 0.536 0.343 0.256 0.204 0.170 0.145 0.127
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The first-price auction: comparing the models
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The first-price auction: level-k cycling

35 / 46



Experimental design

Main idea:

1 Create the aforementioned auction structures in the ‘lab’ (using
induced values)

2 Check which theory (if either) can explain observed bidding
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Experimental design

Some details:

Experiment written in oTree and conducted online

Subjects recruited by CESS

Incentivised (some auctions randomly selected to ‘count’) and
pre-registered
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Experimental design

More details:

Each subject played 2 rounds of every auction format

They were not informed of the bids in previous rounds

‘Perfect stranger matching’

Subjects needed to pass extensive quizzes before they could proceed
to either auction

The experiment concluded by calibrating levels using Alaoui and
Penta (2016)’s variant on Arad and Rubinstein (2012)’s 11/20 game
and measuring risk aversion using the BRET
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Experimental results: first-price auction
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Experimental results: all-pay auction
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Experimental results: error rates

Table: Prediction errors

T1 FP T1 AP T2 FP T2 AP

BNE 15.1 13.3 14.1 14.3
Level-k 21.3 19.8 21.4 24.0
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Experimental results: likelihoods

Table: Comparing equilibrium and level-k

T1FP T1AP T2FP T2AP

BNE LL -4407.9 -4332.7 -1024.7 -1042.2
BIC 8820.5 8670.2 2053.1 2088.1

L1 LL -4530.4 -4501.2 -1088.8 -1128.6
BIC 9065.4 9007.1 2181.3 2260.9

L1-L2 LL -4530.4 -4501.2 -1085 -1126.9
BIC 9070.1 9011.7 2177.4 2261.2

L1-L3 LL -4530.1 -4501.2 -1071.1 -1120.7
BIC 9074.3 9016.4 2153.4 2252.6
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Conclusions

One can design simple (so implementable) environments that
dramatically disentangle level-k and equilibrium predictions

In these environments, level-k predictions + comparative statics are
highly implausible

Why does the model fail so badly while performing so well in other
settings? Perhaps (1) lack of salient anchor (2) computational
complexity
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Conclusions

Pace Crawford et al. (2009) and De Clippel et al. (2019), the level-k
model should not be used for auction design

While equilibrium can be hard to believe in, ‘behavioural’ models can
be even worse!
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