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Preliminaries

@ Accompanying website: https://auctionsolver.herokuapp.com

@ A working paper is also online

2/46


https://auctionsolver.herokuapp.com

Introduction

In recent years, the level-k auction model (Crawford and Iriberri, 2007) has
emerged as a rival to more traditional equilibrium based approaches:

@ Level-0 types either bid their valuation or bid randomly

@ For k > 1, level-k bids optimally on the assumption that all
opponents are level k — 1

@ Most individuals assumed to be levels 1 — 3
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Introduction

Lots of debate over whether level-k can explain the ‘winner’s curse’ in
common value auctions:

e Crawford and Iriberri (2007)
e Ivanov et al. (2010)
@ Costa-Gomes and Shimoji (2015)
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Introduction

Growing interest in the implications of the level-k auction model for
mechanism design:

e Crawford et al. (2009)
e De Clippel et al. (2019)
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Introduction

Surprisingly, however, there is little evidence on whether level-k can

outperform equilibrium in the basic IPV setting that forms the starting
point for most auctions research:

@ Most experiments use uniform values. But then level-k and
equilibrium exactly coincide (for all kK > 1)
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Introduction

Surprisingly, however, there is little evidence on whether level-k can
outperform equilibrium in the basic IPV setting that forms the starting
point for most auctions research:

@ Most experiments use uniform values. But then level-k and
equilibrium exactly coincide (for all kK > 1)

e Crawford and Iriberri (2007)'s IPV data do not strongly separate the
models

o Kirchkamp and ReiB (2010)'s setting better separates the models
(marginally), but their analysis of level-k is incorrect

@ Non-experimental approaches (Gillen, 2009; An, 2017) cannot be
used to convincingly decide between the models
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Introduction

Plan for paper:
@ Find simple environments that dramatically disentangle the two
models’ predictions
@ Construct these environments in the laboratory and check which
model performs the best

Main (substantive) finding: despite its success in other domains, the
level-k model cannot explain behaviour in auctions
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The all-pay auction

Set-up:
@ n > 2 bidders
e Everybody pays their bid (even the losers)
@ Values and bids are restricted to X = {0, 1,2, ..., x} where x € N
@ Nobody wins if the highest bid is a tie (as in the experiment)

@ For the level-k analysis, will assume that values are uniformly and
independently distributed
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The all-pay auction: equilibrium analysis

Proposition 1

The discrete all-pay auction has exactly one symmetric Bayes-Nash
equilibrium.

Sketch of proof.

To prove existence, just apply Harsanyi (1967). To prove uniqueness,
argue that any SE must be monotone, gapless and satisfy

P(b = 0|v = 0) = 1. Given these facts, any candidate SE strategy can be
equivalently represented in jump form. One can then define an inductive
algorithm which produces the candidate SE; and finally show that no other
strategy could be an SE. O

| A\

v
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The all-pay auction: equilibrium analysis

@ Importantly, the proof gives us recipe for computing the SE:
https://auctionsolver.herokuapp.com/

@ In the case of uniform values, we already know that the equilibrium is
in properly mixed strategies (Rasooly and Gavidia-Calderon, 2020)

@ However, the algorithm tells us that expected bids are
well-approximated by the continuous formula

B(v) = <n;l> (x _v::)n—l
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The all-pay auction: equilibrium analysis

O Equilibrium bid Continuous approximation

0 2 4 6 8 10 12 14 16

Valuation
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The all-pay auction: level-k analysis

Given that level-0 bids are uniform, the level-1 player solves the problem

. b n—1
max 7T(V,b):VP(WIn|b)—b—V<X+1> —-b
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The all-pay auction: level-k analysis

Given that level-0 bids are uniform, the level-1 player solves the problem

. b n—1
max 7T(V,b):VP(WIn|b)—b—V<X+1> —b
To solve this, suppose first that n = 2. Then

v

x+1

N——
<1

—b

w(v,b) =b

So b* =0 (for all v!)
If this is true for n = 2, it must also be true for all n > 2.
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The all-pay auction: level-k analysis

o As we have seen, 31(v) =0 for all v € X
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The all-pay auction: level-k analysis

o As we have seen, 81(v) =0 for all v € X
e So B2(v) =1 for v > 2 and $?(v) = 0 otherwise
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The all-pay auction: level-k analysis

o As we have seen, 81(v) =0 for all v € X
e So B2(v) =1 for v > 2 and $?(v) = 0 otherwise
e Similarly, 83(v) =2 for v > 3 and 33(v) = 0 otherwise
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The all-pay auction: level-k analysis

As we have seen, 31(v) =0 for all v € X

So B2(v) =1 for v > 2 and 3?(v) = 0 otherwise
Similarly, 83(v) =2 for v > 3 and 33(v) = 0 otherwise
etc. etc.

Note: we are assuming that level-k players break ties by choosing the
lowest optimal bid.
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The all-pay auction: level-k analysis

What happens at very high levels?

@ Given our assumption about tie-breaking, level-k can never coincide
with the symmetric equilibrium
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The all-pay auction: level-k analysis

What happens at very high levels?
@ Given our assumption about tie-breaking, level-k can never coincide
with the symmetric equilibrium
@ Moreover, level-k must cycle as k — oo

o If it did not cycle, there would need to exist some k € N such that Sk

coincides with S} for all k" > k
e But then Sk would be a symmetric, pure strategy equilibrium,
contradicting Rasooly and Gavidia-Calderon (2020)'s Prop 4.
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The all-pay auction: level-k analysis

Proposition 2
Suppose that
k< (x+1)% +1.

Then a level-k bidder sets 3%(v) = k — 1 for v > k and (v) =0
otherwise. Moreover, there is no k € N at which ¥ coincides with
equilibrium; with the implication that 5% cycles as k — .
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The all-pay auction: comparing the models

— Level 1 — Level 2 — Level 3 ® Equilibrium

40

32

24

Valuation
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The first-price auction

Set-up:
@ n > 2 bidders
@ Only the winner pays their bid
@ Values and bids are restricted to X = {0, 1,2, ..., x} where x € N*
@ Nobody wins if the highest bid is a tie
@ Values are uniformly and independently distributed

e Each player is only allowed to bid with probability p
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The first-price auction: equilibrium analysis

Proposition 3
The discrete first-price auction has exactly one symmetric Bayes-Nash
equilibrium if p € (0,1).

Sketch of proof.
As before!
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The first-price auction: equilibrium analysis

@ As before, the proof tells us exactly how to compute the (unique) SE

@ With uniform values, expected bids remain well-approximated by the
continuous equilibrium, which is now

= (") [1 (1—p1+_pp</>>]
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The first-price auction: equilibrium analysis

— p=1 — p=1/2
30

24

Valuation
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The first-price auction: level-k analysis

Given that level-0 bids are either cancelled or uniform on X, a level-1
player solves the problem

n—1
. _ B B pb
mbéa;g (v b)P(W|n|b) = (v b) (1 p+ " 1)

Routine optimisation then reveals that

oy (52)o (522
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The first-price auction: level-k analysis

— p=1 — p=3/4
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Valuation
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The first-price auction: separating the models

Our goal is to disentangle the two theories. To this end, we define the
distance between the theories as

d(p) = [ 15 - 5] ov.

We now study the probability p* that maximises this distance.
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The first-price auction: comparing the models

Proposition 4
p* € [1/n,1).
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The first-price auction: separating the models

In fact, a numerical analysis reveals that p* ~ 1/n.

Table: Optimal cancellation probabilities (rounded)

n 2 3 4 5 6 7 8
p* 0536 0.343 0.256 0.204 0.170 0.145 0.127
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The first-price auction: comparing the models

— Equilibrium — Level-1 — Level-2 — Level-3

Valuation
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The first-price auction: level-k cycling

— Maximum bid
20
15
10
5
0
0 25 50 75 100

Individual’s ‘level’
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Experimental design

Main idea:

O Create the aforementioned auction structures in the ‘lab’ (using
induced values)

@ Check which theory (if either) can explain observed bidding
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Experimental design

Some details:
@ Experiment written in oTree and conducted online
@ Subjects recruited by CESS

@ Incentivised (some auctions randomly selected to ‘count’) and
pre-registered
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Experimental design

More details:
@ Each subject played 2 rounds of every auction format
@ They were not informed of the bids in previous rounds
@ ‘Perfect stranger matching’
o

Subjects needed to pass extensive quizzes before they could proceed
to either auction

@ The experiment concluded by calibrating levels using Alaoui and
Penta (2016)’s variant on Arad and Rubinstein (2012)'s 11/20 game
and measuring risk aversion using the BRET
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Experimental results: first-price auction

— Average bid — BNE — L1 — L2 — L3
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Experimental results: all-pay auction

— Average bid — BNE — L1 — L2 — L3
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Experimental results: error rates

Table: Prediction errors

T1FP T1AP T2FP T2AP
BNE 151 13.3 14.1 14.3
Level-k | 21.3 19.8 21.4 24.0
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Experimental results: likelihoods

Table: Comparing equilibrium and level-k

Ti1FP  T1AP  T2FP  T2AP

BNE LL  -4407.9 -4332.7 -1024.7 -1042.2
BIC 8820.5 8670.2 2053.1 2088.1

L1 LL  -4530.4 -4501.2 -1088.8 -1128.6
BIC 9065.4 9007.1 2181.3 2260.9

L1-L2 LL  -4530.4 -4501.2 -1085 -1126.9
BIC 9070.1 90117 21774 2261.2

L1-L3 LL  -4530.1 -4501.2 -1071.1 -1120.7
BIC 90743 9016.4 21534 2252.6
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Conclusions

@ One can design simple (so implementable) environments that
dramatically disentangle level-k and equilibrium predictions

@ In these environments, level-k predictions + comparative statics are
highly implausible

@ Why does the model fail so badly while performing so well in other
settings? Perhaps (1) lack of salient anchor (2) computational
complexity
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Conclusions

@ Pace Crawford et al. (2009) and De Clippel et al. (2019), the level-k
model should not be used for auction design

@ While equilibrium can be hard to believe in, ‘behavioural’ models can
be even worse!
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